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Abstract mination variations, or the addition or removal of statigna
objects.

In this paper, we propose a robust multi-layer back-
ground subtraction technique which takes advantages of
local texture features represented by local binary pattern
(LBP) and photometric invariant color measurements in
RGB color space. LBP can work robustly with respective
to light variation on rich texture regions but not so effi-
ciently on uniform regions. In the latter case, color in-
formation should overcome LBP’s limitation. Due to the

Much work has been done since the introduction of the
Mixture of Gaussian (MoG) model by Stauffer and Grim-
son [LO). In their approach, the mixture dk (= 3,4,5)
Gaussians representing the statistics of one pixel over tim
can cope with multi-modal background distributions. How-
ever, a common problem for this approach is to find the
right balance between the speed at which the model adapts
. o . to changing background, and the stablity, i.e. how to avoid
illumination invariance of both the_ LBP feature and the se- forgettir?g t?ackgrgund which is tempora)r/ily occluded. Lee
lected color feature, the method is able to handle local il- . .

o ) et al. [/] proposed an effective scheme to improve the up-
lumination changes such as cast shadows from moving ob-d . - -
: . ate speed without compromising the model stability. To
jects. Due to the use of a simple layer-based strategy, the
approach can model moving background pixels with quasi-
periodic flickering as well as background scenes which may
vary over time due to the addition and removal of long-time
stationary objects. Finally, the use of a cross-bilatertéfi
allows to implicitely smooth detection results over region
of similar intensity and preserve object boundaries. Numer
ical and qualitative experimental results on both simutate
and real data demonstrate the robustness of the proposeo{
method.

robustly represent multi-modal scenes (e.g. waveringtree
or moving escalators), Tuzel al. [11] proposed to esti-
mate the probability distribution of mean and covariance of
each Gaussian using recursive Bayesian learning, which can
preserve the multi-modality of the background and estimate
the number of necessary layers for representing each pixel.
Most of these methods use only pixel color or intensity in-
ormation to detect foreground objects. They may fail when
oreground objects have similar color to the background.
Heikkila et al. [2] developed a novel and powerful approach
based on discriminative texture features represented I#y LB
1] ducti histograms to capture background statistics. The LBP is in-
- Introduction variant to local illumination changes such as cast shadow
Foreground objects detection and segmentation from abecause LBP is obtained by comparing local pixels values.
video stream captured from a stationary camera is one ofHowever, at the same time, it can not detect changes in suf-
the essential tasks in video processing, understanding andiciently large uniform regions if the foreground is also-uni
visual surveillance. A commonly used approach to extract form. In general, most of the methods that tackle the re-
foreground objects consists of performing background sub-moval of shadow and highlighB] 4] proposed to do it in
traction. Despite the large number of background subtrac-a post-processing step. Jacqeesl. [4] proposed to use
tion methods ¥, 6, 7, 8, 10] that have been proposed in the the zero-mean normalized cross-correlation (ZNCC) to first
past decade and that are used in real-time video processingjetect shadow pixel candidates and then refine the results
the task remains challenging when the background containsusing local statistics of pixel ratios. Hal. [3] proposed
moving objects (e.g. waving tree branches, moving esca-a photometric invariant model in the RGB color space to
lators) as well as shadows cast by the moving objects weexplain the intensity changes of one pixel w.r.t. illumina-
want to detect, and undergoes various changes due to illution changes. Kinmet al. [6] present a similar approach,
p— ” d by the E Union 6t WP It but directly embedded in the background modeling, not as
mationlss\évggtywigcﬁlrjlg%ogri:s CXREeTAEIrEOSe;'r;jecT(zgontent Ie(sisn " a post-processing step. .ThEy also proposed a multi-layer
and Retrieval Technologies Applied to Knowledge Extratiod Massive background scheme which, however, needs more memo-
Recordings, FP6-027231). ries and computation costs. Javedal. [5] proposed to




integrate multiple cues (color and gradient informatian) t which should make the LBP signature more stable against
model background statistics. noise (e.g. like compression), especially in uniform areas
In this paper, we propose a layer-based method to de-The larger the value df:|, the larger the changes in pixel
tect moving foreground objects from a video sequence takenvalues due to noise that are allowed without affecting the
under a complex environment by integrating advantages ofbinary thresholding results. If the input imagés a color
both texture and color features. Compared with the previ- image, we first convert it to a gray-scale image on which
ous method proposed by Heikki& al. [2], several mod-  the LBP should be computed in this paper. It can be easily
ifications and new extensions are introduced. First, we in- extended to the multi-channel color image where the LBP
tegrate a newly developed photometric invariant color mea- should be computed on each separated color channel. Also,
surement in the same framework to overcome the limita- multi-scale LBP can be defined with different radiuses at
tions of LBP features in regions of poor or no texture and in different levels.
shadow boundary regions. Second, a flexible weight updat- Heikkila et al.[2] proposed to compute the LBP operator
ing strategy for background modes is proposed to more effi-as LBPpr(x) = 25:1 LBP},”I)%(x)QP* and represent
ciently handle moving background objects such as wavering) gp texture feature using tr2”-bin LBP histogram over
tree branches and moving escalators. Third, a simple layery neighborhood region. The main limitation is that both
based background modeling/detection strategy was develmemories and computation costs should increase exponen-
oped to handle the background scene changes due to adja|ly with the increasing ofP. In this paper, we prefer to
dition or removal of stationary objects (e.g. a car enters arepresent the LBP feature by a setfdbinary numbers. By
scene and stay there for a long time). Itis very useful for this way, both memories and computation costs are linearly
removing the ghost produced by the changed backgroundyroportional to the numbep.
scene, detecting abandoned luggage, etc. Finally, the fast | pp has several advantage properties that are beneficial
cross bilateral filter ] was used to remove noise and en- 15 jts usage in background modeling. As a (binary) dif-
hance foreground objects as a post-processing step. ferential operator, LBP is robust to monotonic gray-scale
The rest of this paper is organized as follows. A brief changes, and can thus tolerate both global and local illu-
introduction on texture and color features is given in Sec- mination changes. In the latter case, cast shadow can be
tion 2. Our proposed method for background modeling and coped with when the shadow areas are not too small and
foreground detection is described in SectibrExperimen-  the chosen circle radius for the LBP features is small. Un-
tal results on simulated and real data are reported in $ectio |ike many other features, the LBP features are very fast to

4. Finally conclusions are given in Sectién compute, which is an important property from the practical
implementation point of view. Furthermore, there are not
2. Texture and Color Features many parameters to set for calculating the LBP features.

In this section, we introduce the local binary pattern that 2 2. Photometric | nvariant Color
is to model texture and the photometric invariant color mea-
surements, which are combined for background modeling The LBP features can work robustly for background

and foreground detection. modeling in most cases. However, it should fail when both
the background image and the foreground objects share the
2.1. Local Binary Pattern same texture information. This is especially frequent in re

gion of low (or no) texture, like image areas such as pure
LBP is a gray-scale invariant texture primitive statisttc.  color wall or floor and the flat foreground object such as
is a powerful mean of texture description. The operator la- pyre color clothes. To handle these situations, we proposed
bels the pixels of an image region by thresholding the neigh- to utilize photometric color features in the RGB color space
borhood of each pixel with the center value and ConSidering which are invariant to illumination Changes such as shad-
the result as a binary number (binary pattern). Given a pixel ows and highlights. Many algorithms generally employ nor-
x on the imagd, the LBP of the pixek can be represented  malized RGB colors (color ratios) to deal with illumination

as follows: changes. However, these algorithms typically work poorly
) in dark regions due to that the dark pixels have higher uncer-
LBPp r(x) ={LBPpp(x)}p-1,..P (1) tainty than the bright pixels. Hence, we observed how pixel
1 >0, values change over time under lighting variation using a
LBPIE?I)%(X) =s(I(vp) =l (x)+n), s(r)= { 0 < 0, color panel and found that there is the same phenomengn as
described in§]. We observe that pixel values changed due
wherel?(x) corresponds to the gray value of the pixeh to illumination changes are mostly distributed along in the
the imagel and{I9(v,)},=1,... p to the gray values oP axis going toward the RGB origin poifi@, 0, 0). Thus, we
equally spaced pixelév,},=1,...p on a circle of radiu® proposed to compare the color difference between a fore-

with the center ak. The parameten is a noise parameter ground pixel and a background pixel using their relative



angle in RGB color space with respect to the origin and use of layers allows us to model/detect multi-layer back-

the minimal and maximal values for the background pixel grounds. The motivation of multi-layered background mod-

which are obtained in the background learning process.  eling and foreground detection is to be able to detect fore-
ground objects against all backgrounds which were learned

3. Background Subtraction Algorithm from past observations but which were subsequently cov-
In this section, we introduce our approach to perform ered by Iong—time stationary objects, and th(_en sudd_enly un-
background modeling subtraction. We describe in turn the cOvered. Without these background layers, interestirgs for

background model, the overall algorithm, the distance usedground objects (e.g., people) will be detected mixed with

to compare image features with modes, and the foregrounoOther stationary objects (e.g., car). In addition, it skicag
detection step. useful to detect abandoned luggage and background scene

changes (such as graffiti or posters) in visual surveillance
3.1. Background Modeling scenarios.

Background modeling is the most important part of any .
background subtraction algorithms. The goal is to construc 3.2. Background Model Update Algorithm

and maintain a statistical representation of the scene to bei?GB valueT* measured at time t (and positia), the al-

?no dd(e:(l)ek()jr. i':gﬁ;;%?&ii?ﬁ?ggzeir?oméeg;%f 'rrgsrr]?agﬁg gorithm first seeks to which mode of the background it be-
9 9 ) longs to by computing a distance between these measure-

2oPoAch SXlos 1 P fetre 2 8 e of (X0 St th data o ach o | i sance,
C good prop ’ gwi noted Dist(m{ "), will be described later. The mode that
invariant photometric distance measure in the RGB space.. | t 1o th ts is denoted: lfive. i —
The algorithm is described for color images, but it can also Is closest to the measurements is denoted lgye. & =

. . t—1 .
be used for gray-scale images with minor modifications, 218 ity Dist(my ). If the dlstanc? to the closest mode
is above a given threshold (I.@.zst(mk_ ) > Thgu), aNEW

The algorithm works as follows. Given tHePB’ and

Let Z = {I'},—;.. .~ be an image sequence of a _ _ L .
scene acquired with a static camera, where the superMode is created with parametef¥', I', I', LBP", winis,
script t denotes the time. LeM! = {M¢(x)}x rep- Winit, 0} wherew;,;; denotes a low initial weight. This new

resent the learned statistical background model at ime Mode is either added to the list of modesKif ™! < Kinax)
for all pixels x belonging to the image grid. The back- ©F replaces the existing mode WhIC'h has the lowest weight
ground model at pixek and timet is denoted byM*(x) = (f K" = Kuax). On the contrary, if the matched mokle
{K"(x), {m}(x)}so1. xt(x) B'(x)}, and consists of a IS close enough to the data (i.e.[ist(m; ") < Thgu) its

list of K*(x) modesmd, (x) learned from the observed data epresentation is updated as follows:

up to the current time instant, of which the filgt (x)(< .

t : t yt—1
K'(x)) have been identified as representing background If = min(L f’(l +5)IA,~%_1)7
observations. Each pixel has a different list size based on I = max(I, Ef AL,
the observed data variation up to the current instant. Tp kee I;; = (1- 04)1,; + al’,
the complexity bounded, we set a maximal mode list size LBP. = (1—a)LBP! '+ aLBP,
Kax. In the following unless explicitly stated or needed, wz = (1- aiu)wé_lf +al,, 2)
the time superscrigtwill be omitted to simplify the presen- with af, = v, (1 + Tt
tation. Similarly, when the same operations applies to each @t = max(@i~!, wt) k
pixel position, we will drop théx) notation. k k7 RD
. i L = 14 max{L; "}, i Ktk
For each pixelk, each mode consists of 7 components k P ey ’
if L; =0 andwk > Ty

according tomy, = {I, I, 1, LBPy, wy, Wy, Ly}, k =

1, é"vGK g I, denotes the average RGB vecthy = while the other modes are updated by recopy from the pre-
(Ii", I/, I,7) of the mode.1;; and1;, denote the estimated o5 time frame (i.em! = m’ ') with the exception of
maximal and minimal RGB vectorshat the pixels associ- the weight, which decreases according to:

ated with this mode can takd.BP; denotes the average
local binary pattern learned from all the LBPs that were as- wh = (1 —a)w! ™" with ol = O‘wAt_l ©)
signed to this modewy € [0, 1] denotes the weight fac- 1+ 7wy,

tor, i.e. the probability that this mode belongs to the back-

ground. w; represents the maximal value that this weight
achieved in the past.;, is the background layer number to
which the mode belongs, whefg, = 0 means thain,, is
not a reliable background mode ahg = [ > 0 indicates
that it is a reliable background mode in thth layer). The

In the aboves € [0,1) is the learning rate involved in the
update rule of the minimum and maximum of color values,
whose goal is to avoid the maximum (resp. minimum) value
keeping increasing (resp. decreasing) over time. This make
the process robust to noise and outlier measurements. The
parameterx € (0,1) is the learning rate that controls the
1\We keep max(min) of each component. update of the color and texture information. The threshold




1 3.2.1 Texture- and Color-based Distance

= ANNNVANNANVRANTIRENNNANAVANVAAY . . . .
Zz n The proposed measurement distance integrating texture in-
o7 T=SWMMNWNWMNWW formation and color information is defined as follows:
£os Dist(m!™!) = AD;..(LBPL ! (x), LBP!(x))

0:3 +(1 - )‘)DC(IZ_l(X)v It(x))7 (5)

0.2 =0

01 mewmwww where the first term measures the texture distance, the
oo 4000 000 second term measures the color distance and 0, 1]

0 1000 2000
Time

Figure 1. Evolution of a mode weight for a quasi-periodic pixel IS a V\./elght value indicating .the contribution of the tex_—

x, where the data repeatedly match the mode for 10 frames ture distance to the overall distance. The smaller the dis-
H ) . _1 .

and don't match the mode for the subsequent 90 frames ta?S?D“t(mZ ), the better the pixet matches the mode

0.005, winst = 0.01), with different constants. k- ) ] ]
The texture distance is defined as:

Ty is used to check whether the updated mode has become
a reliable background mode.

For the update of the weight, we have proposed a novel
‘hysteris’ scheme which works as follows. First, note that whereDy; (-, -) is a binary distance function defined as:
the weight decreasing facter! is proportional to a con-
stant factora,,,, as usually found in other approaches, but Doy (z,y) = { 0 lz -yl .S Tp, @)
also depends on a constanend on the maximal weight 1 otherwise
wg. The larger the value af or the value ofiy, the smaller
the value ofa?, and thus the slower the weight decreases.
Thus, if in the past, the mode has been observed for a suf-Ing either 0 or 1, will be compared to theB P values of
ficiently long amount of time, we will reduce the chances BP!(x), composed of averages@br 1. Hence, the dis-
of forgetting it (e.g. thisis t_he case when the backgr_ou_nd IS tance in Eq7 is quite selective: a measurddB P value
covered by a stationary object, €.9. a parked car). Sirpilarl (e.g. 0) will match its corresponding average only if this
the increase weight facter, depends om,,,, the constant average is close enough (e.g. beldw — 0.2). In other

and the maximal weight;.. The larger the value aforthe ¢ the distance of a measured data to a ‘noisy’ mode for

value ofuy, the larger the value af,,, i.e. the faster the nich the previously observed data lead to averageP
weight increases. This proposed scheme allows to han_dIQ/aIues in the rangip, 1 — 7] will systematically be. In

either background space repeatedly recovered by movingy,is oy the selected distance will favor modes with ciearl
objects, or moving background pixels with quasi-periodic identified L. B P patterns.

flickering, such as escalators. For instance, considered pix i t—1 t i ; .

where a moving background matches a mode in 10 frames The color distancd. (I~ (x), T'(x)) 1s defined as:

of the video and then disappears in the next 90 frames. The D.(I, '(x),I'(x)) = max (Dange(I}; ' (x),I'(x)),

weight updating results with different constantare shown Dyange(Ii (x),TH(x))), (8)

in Fig. 1. With the classical setting-(= 0), the weight in-

creases, but soon saturates at a small value (around 0.1 iWhereDangie (I, (x), T'(x)) @nd Dyange (I, (x), T (x))

the example). By using other reasonable values @&.g. 2 are two d|stancestklallsed on thte relative angle forme_d by the

or 3), the memory effect due to the introduction of the max- W0 RGB vectord; ™ (x) andI'(x), and the range within

imum weight can allow a faster increase of the weight, and Wh'Ch we ‘T:IHOW the color_ changes to vary, FespeCt!Ve'V' as

. . . illustrated in Fig.2. The distancd),,,, ;. is defined as:

a saturation at a larger value better reflecting that thisenod g

may belong to the background. Note that at the same time, Dangre (I (%), T (x)) = 1 — e " max(©.0=0n) ©)

due to the use of both color and texture, the chances thalyhereg is the angle formed by two RGB vectos ™! and

moving foreground objects generate a consistent mode oveft vt the origin of the RGB color space) afg is the

time (and beneficiate from this effect) are quite small. largest angle formed by the RGB vectrand any of the
Finally, after the update step, all the modes jiyal noisy RGB vectorgI! = It + I, |I.| < ne},

{mj}=1, ke are sorted in decreasing order accord- yherel, denotes the noise (esp. compression noise) that

ing to their weights, and the numt_Jer of modes deemed t0can potentially corrupt the measurements, and whe -

belong to the background are the fifst modes that satisfy  rameterizes the maximum amount of noise that can be ex-

N 2 i
B, Kt pected. As a result, we hadg = arcsin(n./||I*||) “. Like
E Wy, E Wiy, Z TB, (4)
k=1 k=1 2Since in practice compression noise happens to be propaltothe

whereTy € [0 1] is a threshold intensity, we defined a minimum valdée, for 6,,.
, .

P
Dicet(LBPo, LBP)=+ 3" Dup(LBPY, LB, (6)
p=1

whereTp € [0,1) is a threshold. Note that, from E§,
the LBP values measured at timg LBP’(x), compris-
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\ Figure 3. Typical foreground objects (out of 50).
Ii'hadow,k
o > neighborhood to take into account for smoothing,con-

trols how much an adjacent pixel is downweighted because
of its intensity difference, and', denotes a Gaussian ker-
Figure 2. The proposed photometric invariant color model. nel. As can be seen, the filter smoothes values that belong
to the same gray-level region, and thus prevents smoothing
the noise parameter presented in EdL for calculating the ~ across edges. The filter is implemented using a fast approx-
LBP, the parameten,. (we used the same value ferand imation mgthods_p]. Finally, the foreground pixels are those
n.) will allow to correctly account for noise in the color dis- for which D’ (x) is larger than thd}, threshold.
tance. This is particularly important for dark pixels where
standard alternative color invariants (e.g. hue or sdampt 4. EXperimental Results
are particularly sensitive to noise. The involved angles ar
illustrated in Fig.2.
The distanceD, 4. (I, ' (x),I¢(x)) is defined as:

B

In this section, we examined the performance of our pro-
posed method on both simultated and real data.

0 Il B 4.1. Simulated Datg
Dyange(IL 1, It):{ L ot “shadow,k> “highlight.kl» To evaluate the different components of our method, we
ofhenwise. (10) performed experiments on simulated data, for which the

> 2 d truth is known:
whereI’(x) € (I, . sow s Lniontiont ] Means that the mea- groun
shadow,k> “highlight,k .
surement belongs to the volume defined by the minimum 52ckground Frames (BF): For each camera, 25 randomly

. < 2 selected background frames containing no foreground ob-
t
and maximum color values &}, , 4., x aNAL}; i gne > S

illustrated in Fig.2. These extremes represent the poten- Jg Cti were SXtrthgs f(;om che recorg(;('j:\{u?eo Ztéi?m' i
tially darkest “shadow” and brightest “highlight” color lva ackground an adow Frames (BSF): In addition to

. S5 o the BF frames, we generated 25 background frames con-
ues that the pixel can take, and are defined jy,,, . = taining highlight and (mainly) shadow effects. The frames

min (pIf, 1) andlj, 0. = max (VI%IZ) wherep were composited as illustrated in Figby removing fore-
and v are shadow and highlight factors, respectively, that ground objects from a real image and replacing them with
define the range of measures that can correspond to a shadyackground content.
owed or highlighted pixel. Typicallyy € [0.4,0.7] and Foreground Frames, without (FF) or with Shadow
vell1.2]. (FSF): To evaluate the detection, we generated composite
. images obtained by clipping foreground objects (see Fjig.
3.3. Foreground Det?"“o.” . at random locations into a background imag&his way,
Foreground detection is gpphed after the update of the foreground ground truth is known (see Fp.The num-
the background mod_el. First, a background dlstanceberofinserted obiects was randomlv selected between 1 and
map Dt = {D*%(x)}« is built, which can be seen as the Jects was randomly selecled between - a
equivalent of the foreground probabilities in the Mixture 10- Whena BF (resp. BSF) frame was used as background,
of Gaussian (MoG) approach. For a given pixelthe ~ We denote the result a FF (resp. FSF) image.
distance is defined aB’(x) = Dist(m%‘l(x)), which Evaluation protocol: The experiments were conducted as
is the distance to the closest mode as mentioned in Subfollows. First, a sequence of 100 BF frames was generated
section3.2, unless we havé > B'(x) and Li(x) =0 and used to build the background model. This model was
(i.e. the mode was never identified as a reliable back-then used to test the foreground detection algorithm on a
ground mode in the past). In this latter case, the distancesimulated foreground image. This operation was repeated
is set to maX(Dist(mf{l(X)),QTbg), where Ty, is a 500 times. Two series of experiments were conducted: in
foreground/background threshold. To filter out noise, the first one, only FF images were considered as testimages
we propose to smooth the distance map using the crosgthis corresponds to the ‘Clean’ condition). In the second

bilateral filter introduced in1]. It is defined as: case, only FSF images were used (this is the ‘Shadow’ con-
~ 1 it i i
Dt (x) = W Z Gl ([V—x]|) G, ([T9 (V)T (x) ) D* (v), dition). Finally, note that the experiments were conducted

~ . .. gt 3To generate photo-realistic images without sawtooth phenomeve
where W(X) IS a nqrmahzmg _COhStamI denotes th_e blend the background image and foreground objects togesiitey aontin-
gray-level image at time t; defines the size of the spatial uous alpha values (opacity) at the boundaries.



Figure 4. Generatio a Background and Shdw frame (BSF)

(bottom right), by filling the holes in the bottom left image with
the content of a background image (top right).

.
Frame 103 Frame 129 Frame 174

Figure 8. Results on a metro video with a moving escalator (first
row: original images; 2nd row: our method; 3rd row: MoG
method).

— g T N

. e = -,
Figure 5. An example of simulated image, with its corresponding
foreground ground truth mask. on two circles with radiuses 2 and 4 were compared to the
central pixel. As can be seen, this does not produce obvi-
ously better results than the use of the LBP feature at the
single scale. From these results, in the ‘Clean’ condition
(Fig. 7(a) and Fig.7(b)), we observe that the combination
of both color and texture measures provide better results
than those obtained with each of the feature taken individ-
ually. Overall, in this case, a value af=0.75 (with the
: distance threshold,,=0.2) gives the best performance. In

o o vins the ‘Shadow’ condition (Fig7(c) and Fig.7(d)), we can

Figure 6. The four scenes considered. observe a performance decrease in all cases. However, the

performance of the texture feature drops more, which indi-

for 4 different scenes, as shown in Fi§). The first three  cates that the texture feature is not so robust when shadow
are real metro surveillance videos. Scene 1 and 2 contain®r reflection exists in the scenes. Nevertheless, again, the
strong shadows and reflections, while scene 3 contains acombination of features is useful, and the best results are
large number of moving background pixels due to the pres- obtained withA=0.25.
ence of the escalator. Scene video 4 is a typical outdoor
surveillance video. 4.2. Real Data

Parameters and performance measures. The method For the real data, the experiments were as follows: for
comprises a large number of parameters. However, mosthe first 100 frames, the parameters indicated in the simu-
of them are not critical. Except stated otherwise, the samelated data were used to quickly obtain a background model.
parameters were used for all experiments. The values wereThen, the update parameters were modified according to:
the LBPg » feature was used, with=3 as noise param-  w;,;;=F=a=a,,=0.001. The parameters of the cross bi-
eter; Tpgu = 0.2, Winir = 0 =a =a, =0.01, 7=5 and lateral filter were set te,=3 ando,.=0.1 (with an intensity

Ty, =0.5 for the update parameterp =0.1 for the tex- scale of 1), and we usexd=0.5 andT;,=0.2, as a compro-
ture distanceyn. =3, 6, =3°, n=0.5 andv=1.2 in the mise between the clean and shadow simulated experiments.
color distance computation. In these experiments, the bi-As a comparison, the MoG methoi] was used. We used
lateral filter was not used (only a gaussian smoothing with the OpenCV implementation with default parameter as ref-
small bandwitho=1). As performance measures, we used erence.

therecal | =N./N, andpr eci si on=N./Ny.; mea- In the first experiment, a real metro surveillance video
sures, whereV,. denotes the number of foreground pixels with a moving escalator was used. The foreground detec-
correctly detected)N,, the number of foreground pixels in  tion results on three typical frames are shown in BigWe

the ground-truth, andVy., the number of detected fore- observe that our method provides better performance than
ground pixels. Also, we used ttfe measur e defined as  the MoG method: not only the moving background pix-
F=2-(precisionrecall)/(precision+recal | ). els are well classified, but the foreground objects are also
Results: Fig. 7 displays the different curves obtained by successfully detected. The results in the second example
varying the threshold valueg,, (cf Subsectior8.3). We (Fig. 9), where the background exhibits waving trees and
also show the performance of a multi-scale LBP feature, flowers confirm the ability of the model to handle moving
LBP 4 5y,(2,4) Where 14(=6+8) neighboring pixels located background.
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Figure 7. Precision-Recall and F-measure curves, for differ@neg of)\, in the ‘Clean’ (a)-(b), and ‘Shadow’ (c)-(d) conditions.
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Frame 757 Frame 778 Frame 805

Figure 9. Results on a sythetic video with a real moving back- Frame 738 Frame 1588 ) Frame 2378
ground scene and a synthetic moving people (first row:original Figure 10. Results on a metro video with cast shadows and reflec-

images; 2nd row: our method; 3rd row: MoG method). tions (first row: original images; 2nd row: our results; 3rd row:
MoG method).

In the third sequence, the video exhibits shadow and re-

flection components. The results (Fidg) demonstrate that red boxes) is waiting at a zebra crossing for a long time, and

our method, though not perfect, handles this shadow bet_becomes part of the background before crossing th_e road.

ter than the MoG method. The fourth sequence (Eiy.is The MoG method produced a ghost after the pedestrian left.

taken from the CAVIAR corpus. Results with both— 0 Thanks to the maintenance of previous background layers in

(only color is used) and = 0.5 are provided, and demon- our algorithm, such a ghost was not produced in our case.

strate the benefit of using both types of features. Another video from PETS’2006 was used for abandoned
In the last two experiments, we test our multi-layer luggage detection. The results are shown in E&where a

scheme, which should be useful to avoid ‘ghosts’ produced person left his luggage and went away.
by traditional approaches, and which should be useful for .
detecting left luggages for instance. The results on an out—5' Conclusions

door camera monitoring traffic and pedestrians at a cross- A robust layer-based background subtraction method is
road are shown in Figl2, where a pedestrian (framed by proposed in this paper. It takes advantages of the comple-



Frame 378

Figure 11. Results on a CAVIAR video (first row: original images;

2nd row: our method with\ = 0.5; 3rd row: our method with
A=0; 4th row: MoG method).

Frame 1075

Frame 2287 Frame 2359

Figure 12. Results on an outdoor monitoring video (first row: orig-

inal images; 2nd row: our results; 3rd row: MoG method).

4 ‘?. .-

Frame 1862 Frame 2076 Frame 2953

Figure 13. Left luggage detection on a PETS'2006 video (first row:

bined with an ‘hysteresis’ update step and the bilateral fil-
ter (which implicitely smooths results over regions of the
same intensity), our method can handle moving background
pixels (e.g., waving trees and moving escalators) as well
as multi-layer background scenes produced by the addition
and removal of long-time stationary objects. Experiments
on both simulated and real data with the same parameters
show that our method can produce satisfactory results in a
large variety of cases.
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