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Abstract

In this paper, we propose a robust multi-layer back-
ground subtraction technique which takes advantages of
local texture features represented by local binary patterns
(LBP) and photometric invariant color measurements in
RGB color space. LBP can work robustly with respective
to light variation on rich texture regions but not so effi-
ciently on uniform regions. In the latter case, color in-
formation should overcome LBP’s limitation. Due to the
illumination invariance of both the LBP feature and the se-
lected color feature, the method is able to handle local il-
lumination changes such as cast shadows from moving ob-
jects. Due to the use of a simple layer-based strategy, the
approach can model moving background pixels with quasi-
periodic flickering as well as background scenes which may
vary over time due to the addition and removal of long-time
stationary objects. Finally, the use of a cross-bilateral filter
allows to implicitely smooth detection results over regions
of similar intensity and preserve object boundaries. Numer-
ical and qualitative experimental results on both simulated
and real data demonstrate the robustness of the proposed
method.

1. Introduction
Foreground objects detection and segmentation from a

video stream captured from a stationary camera is one of
the essential tasks in video processing, understanding and
visual surveillance. A commonly used approach to extract
foreground objects consists of performing background sub-
traction. Despite the large number of background subtrac-
tion methods [2, 6, 7, 8, 10] that have been proposed in the
past decade and that are used in real-time video processing,
the task remains challenging when the background contains
moving objects (e.g. waving tree branches, moving esca-
lators) as well as shadows cast by the moving objects we
want to detect, and undergoes various changes due to illu-
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mination variations, or the addition or removal of stationary
objects.

Much work has been done since the introduction of the
Mixture of Gaussian (MoG) model by Stauffer and Grim-
son [10]. In their approach, the mixture ofK(= 3, 4, 5)
Gaussians representing the statistics of one pixel over time
can cope with multi-modal background distributions. How-
ever, a common problem for this approach is to find the
right balance between the speed at which the model adapts
to changing background, and the stablity, i.e. how to avoid
forgetting background which is temporarily occluded. Lee
et al. [7] proposed an effective scheme to improve the up-
date speed without compromising the model stability. To
robustly represent multi-modal scenes (e.g. wavering trees
or moving escalators), Tuzelet al. [11] proposed to esti-
mate the probability distribution of mean and covariance of
each Gaussian using recursive Bayesian learning, which can
preserve the multi-modality of the background and estimate
the number of necessary layers for representing each pixel.
Most of these methods use only pixel color or intensity in-
formation to detect foreground objects. They may fail when
foreground objects have similar color to the background.
Heikkila et al. [2] developed a novel and powerful approach
based on discriminative texture features represented by LBP
histograms to capture background statistics. The LBP is in-
variant to local illumination changes such as cast shadow
because LBP is obtained by comparing local pixels values.
However, at the same time, it can not detect changes in suf-
ficiently large uniform regions if the foreground is also uni-
form. In general, most of the methods that tackle the re-
moval of shadow and highlight [3, 4] proposed to do it in
a post-processing step. Jacqueset al. [4] proposed to use
the zero-mean normalized cross-correlation (ZNCC) to first
detect shadow pixel candidates and then refine the results
using local statistics of pixel ratios. Hual. [3] proposed
a photometric invariant model in the RGB color space to
explain the intensity changes of one pixel w.r.t. illumina-
tion changes. Kimet al. [6] present a similar approach,
but directly embedded in the background modeling, not as
a post-processing step. They also proposed a multi-layer
background scheme which, however, needs more memo-
ries and computation costs. Javedet al. [5] proposed to



integrate multiple cues (color and gradient information) to
model background statistics.

In this paper, we propose a layer-based method to de-
tect moving foreground objects from a video sequence taken
under a complex environment by integrating advantages of
both texture and color features. Compared with the previ-
ous method proposed by Heikkilaet al. [2], several mod-
ifications and new extensions are introduced. First, we in-
tegrate a newly developed photometric invariant color mea-
surement in the same framework to overcome the limita-
tions of LBP features in regions of poor or no texture and in
shadow boundary regions. Second, a flexible weight updat-
ing strategy for background modes is proposed to more effi-
ciently handle moving background objects such as wavering
tree branches and moving escalators. Third, a simple layer-
based background modeling/detection strategy was devel-
oped to handle the background scene changes due to ad-
dition or removal of stationary objects (e.g. a car enters a
scene and stay there for a long time). It is very useful for
removing the ghost produced by the changed background
scene, detecting abandoned luggage, etc. Finally, the fast
cross bilateral filter [9] was used to remove noise and en-
hance foreground objects as a post-processing step.

The rest of this paper is organized as follows. A brief
introduction on texture and color features is given in Sec-
tion 2. Our proposed method for background modeling and
foreground detection is described in Section3. Experimen-
tal results on simulated and real data are reported in Section
4. Finally conclusions are given in Section5.

2. Texture and Color Features

In this section, we introduce the local binary pattern that
is to model texture and the photometric invariant color mea-
surements, which are combined for background modeling
and foreground detection.

2.1. Local Binary Pattern

LBP is a gray-scale invariant texture primitive statistic.It
is a powerful mean of texture description. The operator la-
bels the pixels of an image region by thresholding the neigh-
borhood of each pixel with the center value and considering
the result as a binary number (binary pattern). Given a pixel
x on the imageI, the LBP of the pixelx can be represented
as follows:

LBPP,R(x) = {LBP
(p)
P,R(x)}p=1,...,P , (1)

LBP
(p)
P,R(x) = s(Ig(vp)−I

g(x)+n), s(x)=

{

1 x ≥ 0,
0 x < 0,

whereIg(x) corresponds to the gray value of the pixelx in
the imageI and{Ig(vp)}p=1,...,P to the gray values ofP
equally spaced pixels{vp}p=1,...,P on a circle of radiusR
with the center atx. The parametern is a noise parameter

which should make the LBP signature more stable against
noise (e.g. like compression), especially in uniform areas.
The larger the value of|n|, the larger the changes in pixel
values due to noise that are allowed without affecting the
binary thresholding results. If the input imageI is a color
image, we first convert it to a gray-scale image on which
the LBP should be computed in this paper. It can be easily
extended to the multi-channel color image where the LBP
should be computed on each separated color channel. Also,
multi-scale LBP can be defined with different radiuses at
different levels.

Heikkila et al. [2] proposed to compute the LBP operator
as LBPP,R(x) =

∑P

p=1 LBP
(p)
P,R(x)2p−1 and represent

LBP texture feature using the2P -bin LBP histogram over
a neighborhood region. The main limitation is that both
memories and computation costs should increase exponen-
tially with the increasing ofP . In this paper, we prefer to
represent the LBP feature by a set ofP binary numbers. By
this way, both memories and computation costs are linearly
proportional to the numberP .

LBP has several advantage properties that are beneficial
to its usage in background modeling. As a (binary) dif-
ferential operator, LBP is robust to monotonic gray-scale
changes, and can thus tolerate both global and local illu-
mination changes. In the latter case, cast shadow can be
coped with when the shadow areas are not too small and
the chosen circle radius for the LBP features is small. Un-
like many other features, the LBP features are very fast to
compute, which is an important property from the practical
implementation point of view. Furthermore, there are not
many parameters to set for calculating the LBP features.

2.2. Photometric Invariant Color

The LBP features can work robustly for background
modeling in most cases. However, it should fail when both
the background image and the foreground objects share the
same texture information. This is especially frequent in re-
gion of low (or no) texture, like image areas such as pure
color wall or floor and the flat foreground object such as
pure color clothes. To handle these situations, we proposed
to utilize photometric color features in the RGB color space,
which are invariant to illumination changes such as shad-
ows and highlights. Many algorithms generally employ nor-
malized RGB colors (color ratios) to deal with illumination
changes. However, these algorithms typically work poorly
in dark regions due to that the dark pixels have higher uncer-
tainty than the bright pixels. Hence, we observed how pixel
values change over time under lighting variation using a
color panel and found that there is the same phenomenon as
described in [6]. We observe that pixel values changed due
to illumination changes are mostly distributed along in the
axis going toward the RGB origin point(0, 0, 0). Thus, we
proposed to compare the color difference between a fore-
ground pixel and a background pixel using their relative



angle in RGB color space with respect to the origin and
the minimal and maximal values for the background pixel
which are obtained in the background learning process.

3. Background Subtraction Algorithm
In this section, we introduce our approach to perform

background modeling subtraction. We describe in turn the
background model, the overall algorithm, the distance used
to compare image features with modes, and the foreground
detection step.

3.1. Background Modeling
Background modeling is the most important part of any

background subtraction algorithms. The goal is to construct
and maintain a statistical representation of the scene to be
modeled. Here, we chose to utilize both texture information
and color information when modeling the background. The
approach exploits the LBP feature as a measure of texture
because of its good properties, along with an illumination
invariant photometric distance measure in the RGB space.
The algorithm is described for color images, but it can also
be used for gray-scale images with minor modifications.

Let I = {It}t=1,...,N be an image sequence of a
scene acquired with a static camera, where the super-
script t denotes the time. LetMt = {Mt(x)}x rep-
resent the learned statistical background model at timet
for all pixels x belonging to the image grid. The back-
ground model at pixelx and timet is denoted byMt(x) =
{Kt(x), {mt

k(x)}k=1,...,Kt(x), B
t(x)}, and consists of a

list of Kt(x) modesmt
k(x) learned from the observed data

up to the current time instant, of which the firstBt(x)(≤
Kt(x)) have been identified as representing background
observations. Each pixel has a different list size based on
the observed data variation up to the current instant. To keep
the complexity bounded, we set a maximal mode list size
Kmax. In the following unless explicitly stated or needed,
the time superscriptt will be omitted to simplify the presen-
tation. Similarly, when the same operations applies to each
pixel position, we will drop the(x) notation.

For each pixelx, each mode consists of 7 components
according tomk = {Ik, Îk, Ǐk,LBPk, wk, ŵk, Lk}, k =
1, . . . ,K. Ik denotes the average RGB vectorIk =
(IR

k , IG
k , IB

k ) of the mode. Îk and Ǐk denote the estimated
maximal and minimal RGB vectors1 that the pixels associ-
ated with this mode can take.LBPk denotes the average
local binary pattern learned from all the LBPs that were as-
signed to this mode.wk ∈ [0, 1] denotes the weight fac-
tor, i.e. the probability that this mode belongs to the back-
ground. ŵk represents the maximal value that this weight
achieved in the past.Lk is the background layer number to
which the mode belongs, whereLk = 0 means thatmk is
not a reliable background mode andLk = l > 0 indicates
that it is a reliable background mode in thel-th layer). The

1We keep max(min) of each component.

use of layers allows us to model/detect multi-layer back-
grounds. The motivation of multi-layered background mod-
eling and foreground detection is to be able to detect fore-
ground objects against all backgrounds which were learned
from past observations but which were subsequently cov-
ered by long-time stationary objects, and then suddenly un-
covered. Without these background layers, interesting fore-
ground objects (e.g., people) will be detected mixed with
other stationary objects (e.g., car). In addition, it should be
useful to detect abandoned luggage and background scene
changes (such as graffiti or posters) in visual surveillance
scenarios.

3.2. Background Model Update Algorithm
The algorithm works as follows. Given theLPB

t and
RGB valueI

t measured at time t (and positionx), the al-
gorithm first seeks to which mode of the background it be-
longs to by computing a distance between these measure-
ments and the data of each modem

t−1
k . This distance, de-

notedDist(mt−1
k ), will be described later. The mode that

is closest to the measurements is denoted byk̃ (i.e. k̃ =
arg mink Dist(mt−1

k )). If the distance to the closest mode
is above a given threshold (i.e.Dist(mt−1

k̃
) > Tbgu), a new

mode is created with parameters{It, It, It,LBP
t, winit,

winit, 0} wherewinit denotes a low initial weight. This new
mode is either added to the list of modes (ifKt−1 < Kmax)
or replaces the existing mode which has the lowest weight
(if Kt−1 = Kmax). On the contrary, if the matched modek̃
is close enough to the data (i.e. ifDist(mt−1

k̃
) < Tbgu) its

representation is updated as follows:
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Ǐ
t

k̃
= min(It, (1 + β)Ǐt−1
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with αi
w = αw(1 + τŵt−1

k̃
)

ŵt

k̃
= max(ŵt−1

k̃
, wt

k̃
),

Lt

k̃
= 1 + max{Lt−1

k }k=1,...,Kt−1,k 6=k̃,

if Lt

k̃
= 0 andŵt

k̃
> Tbw

(2)

while the other modes are updated by recopy from the pre-
vious time frame (i.e.mt

k = m
t−1
k ) with the exception of

the weight, which decreases according to:

wt
k = (1 − αd

w)wt−1
k with αd

w =
αw

1 + τŵt−1
k

(3)

In the above,β ∈ [0, 1) is the learning rate involved in the
update rule of the minimum and maximum of color values,
whose goal is to avoid the maximum (resp. minimum) value
keeping increasing (resp. decreasing) over time. This make
the process robust to noise and outlier measurements. The
parameterα ∈ (0, 1) is the learning rate that controls the
update of the color and texture information. The threshold
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Figure 1. Evolution of a mode weight for a quasi-periodic pixel
x, where the data repeatedly match the mode for 10 frames,
and don’t match the mode for the subsequent 90 frames (αw =
0.005, winit = 0.01), with different constantsτ .

Tbw is used to check whether the updated mode has become
a reliable background mode.

For the update of the weight, we have proposed a novel
‘hysteris’ scheme which works as follows. First, note that
the weight decreasing factorαd

w is proportional to a con-
stant factorαw, as usually found in other approaches, but
also depends on a constantτ and on the maximal weight
ŵk. The larger the value ofτ or the value ofŵk, the smaller
the value ofαd

w, and thus the slower the weight decreases.
Thus, if in the past, the mode has been observed for a suf-
ficiently long amount of time, we will reduce the chances
of forgetting it (e.g. this is the case when the background is
covered by a stationary object, e.g. a parked car). Similarly,
the increase weight factorαi

w depends onαw, the constantτ
and the maximal weight̂wk. The larger the value ofτ or the
value ofŵk, the larger the value ofαi

w, i.e. the faster the
weight increases. This proposed scheme allows to handle
either background space repeatedly recovered by moving
objects, or moving background pixels with quasi-periodic
flickering, such as escalators. For instance, consider a pixel
where a moving background matches a mode in 10 frames
of the video and then disappears in the next 90 frames. The
weight updating results with different constantsτ are shown
in Fig. 1. With the classical setting (τ = 0), the weight in-
creases, but soon saturates at a small value (around 0.1 in
the example). By using other reasonable values ofτ (e.g. 2
or 3), the memory effect due to the introduction of the max-
imum weight can allow a faster increase of the weight, and
a saturation at a larger value better reflecting that this mode
may belong to the background. Note that at the same time,
due to the use of both color and texture, the chances that
moving foreground objects generate a consistent mode over
time (and beneficiate from this effect) are quite small.

Finally, after the update step, all the modes
{mt

k}k=1,...,Kt are sorted in decreasing order accord-
ing to their weights, and the number of modes deemed to
belong to the background are the firstBt modes that satisfy

∑Bt

k=1
wt

k

/

∑Kt

k=1
wt

k ≥ TB , (4)

whereTB ∈ [0, 1] is a threshold.

3.2.1 Texture- and Color-based Distance
The proposed measurement distance integrating texture in-
formation and color information is defined as follows:

Dist(mt−1
k ) = λDtext(LBP

t−1
k (x),LBP

t(x))

+(1 − λ)Dc(I
t−1
k (x), It(x)), (5)

where the first term measures the texture distance, the
second term measures the color distance andλ ∈ [0, 1]
is a weight value indicating the contribution of the tex-
ture distance to the overall distance. The smaller the dis-
tanceDist(mt−1

k ), the better the pixelx matches the mode
m

t−1
k .
The texture distance is defined as:

Dtext(LBPa,LBPb)=
1

P

P
X

p=1

D0|1

“

LBP
(p)
a , LBP

(p)
b

”

, (6)

whereD0|1(·, ·) is a binary distance function defined as:

D0|1(x, y) =

{

0 |x − y| ≤ TD,
1 otherwise,

(7)

whereTD ∈ [0, 1) is a threshold. Note that, from Eq.5,
the LBP values measured at timet, LBP

t(x), compris-
ing either 0 or 1, will be compared to theLBP values of
LBP

t
k(x), composed of averages of0 or 1. Hence, the dis-

tance in Eq.7 is quite selective: a measuredLBP value
(e.g. 0) will match its corresponding average only if this
average is close enough (e.g. belowTD = 0.2). In other
words, the distance of a measured data to a ‘noisy’ mode for
which the previously observed data lead to averageLBP
values in the range[TD, 1−TD] will systematically be1. In
this way, the selected distance will favor modes with clearly
identifiedLBP patterns.

The color distanceDc(I
t−1
k (x), It(x)) is defined as:

Dc(I
t−1
k (x), It(x)) = max

`

Dangle(I
t−1
k (x), It(x)),

Drange(I
t−1
k (x), It(x))

´

, (8)

whereDangle(I
t−1
k (x), It(x)) andDrange(I

t−1
k (x), It(x))

are two distances based on the relative angle formed by the
two RGB vectorsIt−1

k (x) andI
t(x), and the range within

which we allow the color changes to vary, respectively, as
illustrated in Fig.2. The distanceDangle is defined as:

Dangle(I
t−1
k (x), It(x)) = 1 − e

−κ max(0,θ−θn)
, (9)

whereθ is the angle formed by two RGB vectorsIt−1
k and

I
t (w.r.t. the origin of the RGB color space) andθn is the

largest angle formed by the RGB vectorI
t and any of the

virtual noisy RGB vectors{Ĩt = I
t + In, ‖In‖ ≤ nc},

whereIn denotes the noise (esp. compression noise) that
can potentially corrupt the measurements, and wherenc pa-
rameterizes the maximum amount of noise that can be ex-
pected. As a result, we haveθn = arcsin(nc/‖I

t‖) 2. Like

2Since in practice compression noise happens to be proportional to the
intensity, we defined a minimum valuěθn for θn.
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Figure 2. The proposed photometric invariant color model.

the noise parametern presented in Eq.1 for calculating the
LBP, the parameternc (we used the same value forn and
nc) will allow to correctly account for noise in the color dis-
tance. This is particularly important for dark pixels where
standard alternative color invariants (e.g. hue or saturation)
are particularly sensitive to noise. The involved angles are
illustrated in Fig.2.

The distanceDrange(I
t−1
k (x), It(x)) is defined as:

Drange(I
t−1
k , I

t)=



0 if I
t∈ [Ǐt

shadow,k, Ît
highlight,k],

1 otherwise.
(10)

whereI
t(x)∈ [Ǐt

shadow,k, Ît
highlight,k] means that the mea-

surement belongs to the volume defined by the minimum
and maximum color values ofǏt

shadow,k andÎ
t
highlight,k, as

illustrated in Fig.2. These extremes represent the poten-
tially darkest “shadow” and brightest “highlight” color val-
ues that the pixel can take, and are defined byǏ

t
shadow,k =

min
(

µI
t
k, Ǐt

k

)

and Î
t
highlight,k = max

(

νIt
k, Ît

k

)

whereµ

andν are shadow and highlight factors, respectively, that
define the range of measures that can correspond to a shad-
owed or highlighted pixel. Typically,µ ∈ [0.4, 0.7] and
ν ∈ [1, 1.2].

3.3. Foreground Detection
Foreground detection is applied after the update of

the background model. First, a background distance
mapD

t = {Dt(x)}x is built, which can be seen as the
equivalent of the foreground probabilities in the Mixture
of Gaussian (MoG) approach. For a given pixelx, the
distance is defined asDt(x) = Dist(mt−1

k̃
(x)), which

is the distance to the closest mode as mentioned in Sub-
section3.2, unless we havẽk > Bt(x) andLk̃(x) = 0
(i.e. the mode was never identified as a reliable back-
ground mode in the past). In this latter case, the distance
is set to max(Dist(mt−1

k̃
(x)), 2Tbg), where Tbg is a

foreground/background threshold. To filter out noise,
we propose to smooth the distance map using the cross
bilateral filter introduced in [1]. It is defined as:

D̃
t(x)=

1

W̃(x)

X

v

Gσs
(‖v−x‖)Gσr

(|Ig,t(v)−I
g,t(x)|)Dt(v),

whereW̃(x) is a normalizing constant,Ig,t denotes the
gray-level image at time t,σs defines the size of the spatial

Figure 3. Typical foreground objects (out of 50).

neighborhood to take into account for smoothing,σr con-
trols how much an adjacent pixel is downweighted because
of its intensity difference, andGσ denotes a Gaussian ker-
nel. As can be seen, the filter smoothes values that belong
to the same gray-level region, and thus prevents smoothing
across edges. The filter is implemented using a fast approx-
imation method [9]. Finally, the foreground pixels are those
for which D̃

t(x) is larger than theTbg threshold.

4. Experimental Results

In this section, we examined the performance of our pro-
posed method on both simultated and real data.

4.1. Simulated Data
To evaluate the different components of our method, we

performed experiments on simulated data, for which the
ground truth is known:
Background Frames (BF): For each camera, 25 randomly
selected background frames containing no foreground ob-
jects were extracted from the recorded video stream.
Background and Shadow Frames (BSF): In addition to
the BF frames, we generated 25 background frames con-
taining highlight and (mainly) shadow effects. The frames
were composited as illustrated in Fig.4, by removing fore-
ground objects from a real image and replacing them with
background content.
Foreground Frames, without (FF) or with Shadow
(FSF): To evaluate the detection, we generated composite
images obtained by clipping foreground objects (see Fig.3)
at random locations into a background image3. This way,
the foreground ground truth is known (see Fig.5). The num-
ber of inserted objects was randomly selected between 1 and
10. When a BF (resp. BSF) frame was used as background,
we denote the result a FF (resp. FSF) image.
Evaluation protocol: The experiments were conducted as
follows. First, a sequence of 100 BF frames was generated
and used to build the background model. This model was
then used to test the foreground detection algorithm on a
simulated foreground image. This operation was repeated
500 times. Two series of experiments were conducted: in
the first one, only FF images were considered as test images
(this corresponds to the ‘Clean’ condition). In the second
case, only FSF images were used (this is the ‘Shadow’ con-
dition). Finally, note that the experiments were conducted

3To generate photo-realistic images without sawtooth phenomenon, we
blend the background image and foreground objects together using contin-
uous alpha values (opacity) at the boundaries.
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Figure 4. Generation of a Background and Shadow frame (BSF)
(bottom right), by filling the holes in the bottom left image with
the content of a background image (top right).

Figure 5. An example of simulated image, with its corresponding
foreground ground truth mask.

(a)  Scene Video 1 (b)  Scene Video 2

(c)  Scene Video 3 (d)  Scene Video 4

Figure 6. The four scenes considered.

for 4 different scenes, as shown in Fig.6. The first three
are real metro surveillance videos. Scene 1 and 2 contains
strong shadows and reflections, while scene 3 contains a
large number of moving background pixels due to the pres-
ence of the escalator. Scene video 4 is a typical outdoor
surveillance video.
Parameters and performance measures: The method
comprises a large number of parameters. However, most
of them are not critical. Except stated otherwise, the same
parameters were used for all experiments. The values were:
the LBP6,2 feature was used, withn=3 as noise param-
eter; Tbgu = 0.2, winit = β = α = αw = 0.01, τ = 5 and
Tbw =0.5 for the update parameters;TD =0.1 for the tex-
ture distance;nc =3, θ̌n =3◦, µ=0.5 andν =1.2 in the
color distance computation. In these experiments, the bi-
lateral filter was not used (only a gaussian smoothing with
small bandwithσ=1). As performance measures, we used
therecall=Nc/Ngt andprecision=Nc/Ndet mea-
sures, whereNc denotes the number of foreground pixels
correctly detected,Ngt the number of foreground pixels in
the ground-truth, andNdet the number of detected fore-
ground pixels. Also, we used theF-measure defined as
F=2·(precision·recall)/(precision+recall).
Results: Fig. 7 displays the different curves obtained by
varying the threshold valuesTbg (cf Subsection3.3). We
also show the performance of a multi-scale LBP feature,
LBP{6,8},{2,4} where 14(=6+8) neighboring pixels located

Frame 103 Frame 129 Frame 174

Figure 8. Results on a metro video with a moving escalator (first
row: original images; 2nd row: our method; 3rd row: MoG
method).

on two circles with radiuses 2 and 4 were compared to the
central pixel. As can be seen, this does not produce obvi-
ously better results than the use of the LBP feature at the
single scale. From these results, in the ‘Clean’ condition
(Fig. 7(a) and Fig.7(b)), we observe that the combination
of both color and texture measures provide better results
than those obtained with each of the feature taken individ-
ually. Overall, in this case, a value ofλ=0.75 (with the
distance thresholdTbg=0.2) gives the best performance. In
the ‘Shadow’ condition (Fig.7(c) and Fig.7(d)), we can
observe a performance decrease in all cases. However, the
performance of the texture feature drops more, which indi-
cates that the texture feature is not so robust when shadow
or reflection exists in the scenes. Nevertheless, again, the
combination of features is useful, and the best results are
obtained withλ=0.25.

4.2. Real Data
For the real data, the experiments were as follows: for

the first 100 frames, the parameters indicated in the simu-
lated data were used to quickly obtain a background model.
Then, the update parameters were modified according to:
winit=β=α=αw=0.001. The parameters of the cross bi-
lateral filter were set toσs=3 andσr=0.1 (with an intensity
scale of 1), and we usedλ=0.5 andTbg=0.2, as a compro-
mise between the clean and shadow simulated experiments.
As a comparison, the MoG method [10] was used. We used
the OpenCV implementation with default parameter as ref-
erence.

In the first experiment, a real metro surveillance video
with a moving escalator was used. The foreground detec-
tion results on three typical frames are shown in Fig.8. We
observe that our method provides better performance than
the MoG method: not only the moving background pix-
els are well classified, but the foreground objects are also
successfully detected. The results in the second example
(Fig. 9), where the background exhibits waving trees and
flowers confirm the ability of the model to handle moving
background.
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Figure 7. Precision-Recall and F-measure curves, for different values ofλ, in the ‘Clean’ (a)-(b), and ‘Shadow’ (c)-(d) conditions.

Frame 757 Frame 778 Frame 805

Figure 9. Results on a sythetic video with a real moving back-
ground scene and a synthetic moving people (first row:original
images; 2nd row: our method; 3rd row: MoG method).

In the third sequence, the video exhibits shadow and re-
flection components. The results (Fig.10) demonstrate that
our method, though not perfect, handles this shadow bet-
ter than the MoG method. The fourth sequence (Fig.11) is
taken from the CAVIAR corpus. Results with bothλ = 0
(only color is used) andλ = 0.5 are provided, and demon-
strate the benefit of using both types of features.

In the last two experiments, we test our multi-layer
scheme, which should be useful to avoid ‘ghosts’ produced
by traditional approaches, and which should be useful for
detecting left luggages for instance. The results on an out-
door camera monitoring traffic and pedestrians at a cross-
road are shown in Fig.12, where a pedestrian (framed by

Frame 738 Frame 1588 Frame 2378

Figure 10. Results on a metro video with cast shadows and reflec-
tions (first row: original images; 2nd row: our results; 3rd row:
MoG method).

red boxes) is waiting at a zebra crossing for a long time, and
becomes part of the background before crossing the road.
The MoG method produced a ghost after the pedestrian left.
Thanks to the maintenance of previous background layers in
our algorithm, such a ghost was not produced in our case.
Another video from PETS’2006 was used for abandoned
luggage detection. The results are shown in Fig.13where a
person left his luggage and went away.

5. Conclusions
A robust layer-based background subtraction method is

proposed in this paper. It takes advantages of the comple-



Frame 378 Frame 504 Frame 964

Figure 11. Results on a CAVIAR video (first row: original images;
2nd row: our method withλ = 0.5; 3rd row: our method with
λ=0; 4th row: MoG method).

Frame 1075 Frame 2287 Frame 2359

Ghost

Figure 12. Results on an outdoor monitoring video (first row: orig-
inal images; 2nd row: our results; 3rd row: MoG method).
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Figure 13. Left luggage detection on a PETS’2006 video (first row:
original images with detected luggage covered by blue color; 2nd
row: foreground detection results of our method).

mentarity of LBP and color features to improve the perfor-
mance. While LBP features work robustly on rich texture
regions, color features with an illumination invariant model
produce more stable results in uniform regions. Com-

bined with an ‘hysteresis’ update step and the bilateral fil-
ter (which implicitely smooths results over regions of the
same intensity), our method can handle moving background
pixels (e.g., waving trees and moving escalators) as well
as multi-layer background scenes produced by the addition
and removal of long-time stationary objects. Experiments
on both simulated and real data with the same parameters
show that our method can produce satisfactory results in a
large variety of cases.
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